Các nhà khoa học Đức đã tạo ra bước đột phá trong lĩnh vực vật lý khi cho ra đời một loại ánh sáng mới bằng cách làm lạnh các phân tử photon sang trạng thái đốm màu.
Tuy nhiên, bốn nhà vật lý Jan Klärs, Julian Schmitt, Frank Vewinger và Martin Weitz thuộc Đại học Bonn ở Đức mới đây thông báo đã hoàn thành "nhiệm vụ bất khả thi" trên. Họ đặt tên cho các hạt mới là "các siêu photon".
Các hạt trong một trạng thái ngưng tụ Bose-Einstein truyền thống được làm lạnh tới độ không tuyệt đối, cho tới khi chúng hoà vào nhau và trở nên không thể phân biệt được, tạo thành một hạt khổng lồ. Các chuyên gia từng cho rằng, các photon sẽ không thể đạt được trạng thái này vì việc vừa làm lạnh ánh sáng vừa ngưng tụ nó cùng lúc dường như là bất khả thi. Do photon là các hạt không có khối lượng nên chúng đơn giản có thể bị hấp thụ vào môi trường xung quanh và biến mất - điều thường xảy ra khi chúng bị làm lạnh.
Theo trang LiveScience, bốn nhà vật lý Đức cuối cùng đã tìm được cách làm lạnh các hạt photon mà không làm giảm số lượng của chúng. Để nhốt giữ các photon, những nhà nghiên cứu này đã sáng chế ra một thùng chứa làm bằng những tấm gương đặt vô cùng sát nhau và chỉ cách nhau khoảng một phần triệu của một mét (1 micron). Giữa các gương, nhóm nghiên cứu đặt các phân tử "thuốc nhuộm" (về cơ bản chỉ có một lượng nhỏ chất nhuộm màu). Khi các photon va chạm với những phân tử này, chúng bị hấp thu và sau đó được tái phát.
Các tấm gương đã "tóm" các photon bằng cách giữ cho chúng nhảy tiến - lui trong một trạng thái bị giới hạn. Trong quá trình đó, các hạt quang tử trao đổi nhiệt lượng mỗi khi chúng va chạm với một phân tử thuốc nhuộm. Và cuối cùng, chúng bị làm lạnh tới mức nhiệt độ phòng.
Mặc dù mức nhiệt độ phòng không thể đạt độ không tuyệt đối nhưng nó đã đủ lạnh để các photon kết lại thành một trạng thái ngưng tụ Bose-Einstein.
Trong bài viết mới đây trên tạp chí Nature, nhà vật lý James Anglin thuộc trường Đại học Kỹ thuật Kaiserslautern (Đức) đánh giá thử nghiệm trên là "một thành tựu mang tính bước ngoặt". Các tác giả của nghiên cứu này cho biết thêm rằng, công trình của họ có thể giúp mang tới những ứng dụng trong việc chế tạo các loại laser mới, với khả năng sinh ra ánh sáng có bước sóng vô cùng ngắn trong các dải tia X hoặc tia cực tím.
Một "siêu photon" đuợc tạo ra khi các hạt photon bị làm lạnh tới một trạng thái vật chất được gọi tên là "trạng thái ngưng tụ Bose-Einstein". (Ảnh: Softpedia).
Tuy nhiên, bốn nhà vật lý Jan Klärs, Julian Schmitt, Frank Vewinger và Martin Weitz thuộc Đại học Bonn ở Đức mới đây thông báo đã hoàn thành "nhiệm vụ bất khả thi" trên. Họ đặt tên cho các hạt mới là "các siêu photon".
Các hạt trong một trạng thái ngưng tụ Bose-Einstein truyền thống được làm lạnh tới độ không tuyệt đối, cho tới khi chúng hoà vào nhau và trở nên không thể phân biệt được, tạo thành một hạt khổng lồ. Các chuyên gia từng cho rằng, các photon sẽ không thể đạt được trạng thái này vì việc vừa làm lạnh ánh sáng vừa ngưng tụ nó cùng lúc dường như là bất khả thi. Do photon là các hạt không có khối lượng nên chúng đơn giản có thể bị hấp thụ vào môi trường xung quanh và biến mất - điều thường xảy ra khi chúng bị làm lạnh.
Theo trang LiveScience, bốn nhà vật lý Đức cuối cùng đã tìm được cách làm lạnh các hạt photon mà không làm giảm số lượng của chúng. Để nhốt giữ các photon, những nhà nghiên cứu này đã sáng chế ra một thùng chứa làm bằng những tấm gương đặt vô cùng sát nhau và chỉ cách nhau khoảng một phần triệu của một mét (1 micron). Giữa các gương, nhóm nghiên cứu đặt các phân tử "thuốc nhuộm" (về cơ bản chỉ có một lượng nhỏ chất nhuộm màu). Khi các photon va chạm với những phân tử này, chúng bị hấp thu và sau đó được tái phát.
Các tấm gương đã "tóm" các photon bằng cách giữ cho chúng nhảy tiến - lui trong một trạng thái bị giới hạn. Trong quá trình đó, các hạt quang tử trao đổi nhiệt lượng mỗi khi chúng va chạm với một phân tử thuốc nhuộm. Và cuối cùng, chúng bị làm lạnh tới mức nhiệt độ phòng.
Mặc dù mức nhiệt độ phòng không thể đạt độ không tuyệt đối nhưng nó đã đủ lạnh để các photon kết lại thành một trạng thái ngưng tụ Bose-Einstein.
Trong bài viết mới đây trên tạp chí Nature, nhà vật lý James Anglin thuộc trường Đại học Kỹ thuật Kaiserslautern (Đức) đánh giá thử nghiệm trên là "một thành tựu mang tính bước ngoặt". Các tác giả của nghiên cứu này cho biết thêm rằng, công trình của họ có thể giúp mang tới những ứng dụng trong việc chế tạo các loại laser mới, với khả năng sinh ra ánh sáng có bước sóng vô cùng ngắn trong các dải tia X hoặc tia cực tím.